0 JBC
↳1 JBC2FIG (⇒)
↳2 JBCTerminationGraph
↳3 FIGtoITRSProof (⇒)
↳4 IDP
↳5 IDPNonInfProof (⇒)
↳6 IDP
↳7 IDependencyGraphProof (⇔)
↳8 TRUE
/**
* Example taken from "A Term Rewriting Approach to the Automated Termination
* Analysis of Imperative Programs" (http://www.cs.unm.edu/~spf/papers/2009-02.pdf)
* and converted to Java.
*/
public class PastaA10 {
public static void main(String[] args) {
Random.args = args;
int x = Random.random();
int y = Random.random();
while (x != y) {
if (x > y) {
y++;
} else {
x++;
}
}
}
}
public class Random {
static String[] args;
static int index = 0;
public static int random() {
String string = args[index];
index++;
return string.length();
}
}
Generated 16 rules for P and 2 rules for R.
Combined rules. Obtained 2 rules for P and 0 rules for R.
Filtered ground terms:
629_0_main_Load(x1, x2, x3, x4) → 629_0_main_Load(x2, x3, x4)
Cond_629_0_main_Load1(x1, x2, x3, x4, x5) → Cond_629_0_main_Load1(x1, x3, x4, x5)
Cond_629_0_main_Load(x1, x2, x3, x4, x5) → Cond_629_0_main_Load(x1, x3, x4, x5)
Filtered duplicate args:
629_0_main_Load(x1, x2, x3) → 629_0_main_Load(x2, x3)
Cond_629_0_main_Load1(x1, x2, x3, x4) → Cond_629_0_main_Load1(x1, x3, x4)
Cond_629_0_main_Load(x1, x2, x3, x4) → Cond_629_0_main_Load(x1, x3, x4)
Combined rules. Obtained 2 rules for P and 0 rules for R.
Finished conversion. Obtained 2 rules for P and 0 rules for R. System has predefined symbols.
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Boolean, Integer
(0) -> (1), if ((x1[0] > x0[0] && x0[0] >= 0 →* TRUE)∧(x1[0] →* x1[1])∧(x0[0] →* x0[1]))
(1) -> (0), if ((x1[1] →* x1[0])∧(x0[1] + 1 →* x0[0]))
(1) -> (2), if ((x1[1] →* x1[2])∧(x0[1] + 1 →* x0[2]))
(2) -> (3), if ((x1[2] >= 0 && x1[2] < x0[2] →* TRUE)∧(x1[2] →* x1[3])∧(x0[2] →* x0[3]))
(3) -> (0), if ((x1[3] + 1 →* x1[0])∧(x0[3] →* x0[0]))
(3) -> (2), if ((x1[3] + 1 →* x1[2])∧(x0[3] →* x0[2]))
(1) (&&(>(x1[0], x0[0]), >=(x0[0], 0))=TRUE∧x1[0]=x1[1]∧x0[0]=x0[1] ⇒ 629_0_MAIN_LOAD(x1[0], x0[0])≥NonInfC∧629_0_MAIN_LOAD(x1[0], x0[0])≥COND_629_0_MAIN_LOAD(&&(>(x1[0], x0[0]), >=(x0[0], 0)), x1[0], x0[0])∧(UIncreasing(COND_629_0_MAIN_LOAD(&&(>(x1[0], x0[0]), >=(x0[0], 0)), x1[0], x0[0])), ≥))
(2) (>(x1[0], x0[0])=TRUE∧>=(x0[0], 0)=TRUE ⇒ 629_0_MAIN_LOAD(x1[0], x0[0])≥NonInfC∧629_0_MAIN_LOAD(x1[0], x0[0])≥COND_629_0_MAIN_LOAD(&&(>(x1[0], x0[0]), >=(x0[0], 0)), x1[0], x0[0])∧(UIncreasing(COND_629_0_MAIN_LOAD(&&(>(x1[0], x0[0]), >=(x0[0], 0)), x1[0], x0[0])), ≥))
(3) (x1[0] + [-1] + [-1]x0[0] ≥ 0∧x0[0] ≥ 0 ⇒ (UIncreasing(COND_629_0_MAIN_LOAD(&&(>(x1[0], x0[0]), >=(x0[0], 0)), x1[0], x0[0])), ≥)∧[(-1)bni_15 + (-1)Bound*bni_15] + [bni_15]max{[-1]x0[0] + x1[0], x0[0] + [-1]x1[0]} ≥ 0∧[(-1)bso_16] + max{[-1]x0[0] + x1[0], x0[0] + [-1]x1[0]} + [-1]max{[-1]x0[0] + x1[0], x0[0] + [-1]x1[0]} ≥ 0)
(4) (x1[0] + [-1] + [-1]x0[0] ≥ 0∧x0[0] ≥ 0 ⇒ (UIncreasing(COND_629_0_MAIN_LOAD(&&(>(x1[0], x0[0]), >=(x0[0], 0)), x1[0], x0[0])), ≥)∧[(-1)bni_15 + (-1)Bound*bni_15] + [bni_15]max{[-1]x0[0] + x1[0], x0[0] + [-1]x1[0]} ≥ 0∧[(-1)bso_16] + max{[-1]x0[0] + x1[0], x0[0] + [-1]x1[0]} + [-1]max{[-1]x0[0] + x1[0], x0[0] + [-1]x1[0]} ≥ 0)
(5) (x1[0] + [-1] + [-1]x0[0] ≥ 0∧x0[0] ≥ 0∧[-2]x0[0] + [2]x1[0] ≥ 0 ⇒ (UIncreasing(COND_629_0_MAIN_LOAD(&&(>(x1[0], x0[0]), >=(x0[0], 0)), x1[0], x0[0])), ≥)∧[(-1)bni_15 + (-1)Bound*bni_15] + [(-1)bni_15]x0[0] + [bni_15]x1[0] ≥ 0∧[(-1)bso_16] ≥ 0)
(6) (x1[0] ≥ 0∧x0[0] ≥ 0∧[2] + [2]x1[0] ≥ 0 ⇒ (UIncreasing(COND_629_0_MAIN_LOAD(&&(>(x1[0], x0[0]), >=(x0[0], 0)), x1[0], x0[0])), ≥)∧[(-1)Bound*bni_15] + [bni_15]x1[0] ≥ 0∧[(-1)bso_16] ≥ 0)
(7) (x1[0] ≥ 0∧x0[0] ≥ 0∧[1] + x1[0] ≥ 0 ⇒ (UIncreasing(COND_629_0_MAIN_LOAD(&&(>(x1[0], x0[0]), >=(x0[0], 0)), x1[0], x0[0])), ≥)∧[(-1)Bound*bni_15] + [bni_15]x1[0] ≥ 0∧[(-1)bso_16] ≥ 0)
(8) (x1[1]=x1[0]∧+(x0[1], 1)=x0[0]∧&&(>(x1[0], x0[0]), >=(x0[0], 0))=TRUE∧x1[0]=x1[1]1∧x0[0]=x0[1]1 ⇒ COND_629_0_MAIN_LOAD(TRUE, x1[1]1, x0[1]1)≥NonInfC∧COND_629_0_MAIN_LOAD(TRUE, x1[1]1, x0[1]1)≥629_0_MAIN_LOAD(x1[1]1, +(x0[1]1, 1))∧(UIncreasing(629_0_MAIN_LOAD(x1[1]1, +(x0[1]1, 1))), ≥))
(9) (>(x1[0], +(x0[1], 1))=TRUE∧>=(+(x0[1], 1), 0)=TRUE ⇒ COND_629_0_MAIN_LOAD(TRUE, x1[0], +(x0[1], 1))≥NonInfC∧COND_629_0_MAIN_LOAD(TRUE, x1[0], +(x0[1], 1))≥629_0_MAIN_LOAD(x1[0], +(+(x0[1], 1), 1))∧(UIncreasing(629_0_MAIN_LOAD(x1[1]1, +(x0[1]1, 1))), ≥))
(10) (x1[0] + [-2] + [-1]x0[1] ≥ 0∧x0[1] + [1] ≥ 0 ⇒ (UIncreasing(629_0_MAIN_LOAD(x1[1]1, +(x0[1]1, 1))), ≥)∧[(-1)bni_17 + (-1)Bound*bni_17] + [bni_17]max{[-1] + [-1]x0[1] + x1[0], [1] + x0[1] + [-1]x1[0]} ≥ 0∧[(-1)bso_18] + max{[-1] + [-1]x0[1] + x1[0], [1] + x0[1] + [-1]x1[0]} + [-1]max{[-2] + [-1]x0[1] + x1[0], [2] + x0[1] + [-1]x1[0]} ≥ 0)
(11) (x1[0] + [-2] + [-1]x0[1] ≥ 0∧x0[1] + [1] ≥ 0 ⇒ (UIncreasing(629_0_MAIN_LOAD(x1[1]1, +(x0[1]1, 1))), ≥)∧[(-1)bni_17 + (-1)Bound*bni_17] + [bni_17]max{[-1] + [-1]x0[1] + x1[0], [1] + x0[1] + [-1]x1[0]} ≥ 0∧[(-1)bso_18] + max{[-1] + [-1]x0[1] + x1[0], [1] + x0[1] + [-1]x1[0]} + [-1]max{[-2] + [-1]x0[1] + x1[0], [2] + x0[1] + [-1]x1[0]} ≥ 0)
(12) (x1[0] + [-2] + [-1]x0[1] ≥ 0∧x0[1] + [1] ≥ 0∧[-2] + [-2]x0[1] + [2]x1[0] ≥ 0∧[-4] + [-2]x0[1] + [2]x1[0] ≥ 0 ⇒ (UIncreasing(629_0_MAIN_LOAD(x1[1]1, +(x0[1]1, 1))), ≥)∧[(-2)bni_17 + (-1)Bound*bni_17] + [(-1)bni_17]x0[1] + [bni_17]x1[0] ≥ 0∧[1 + (-1)bso_18] ≥ 0)
(13) (x1[0] ≥ 0∧x0[1] + [1] ≥ 0∧[2] + [2]x1[0] ≥ 0∧[2]x1[0] ≥ 0 ⇒ (UIncreasing(629_0_MAIN_LOAD(x1[1]1, +(x0[1]1, 1))), ≥)∧[(-1)Bound*bni_17] + [bni_17]x1[0] ≥ 0∧[1 + (-1)bso_18] ≥ 0)
(14) (x1[0] ≥ 0∧x0[1] + [1] ≥ 0∧[2] + [2]x1[0] ≥ 0∧[2]x1[0] ≥ 0∧x0[1] ≥ 0 ⇒ (UIncreasing(629_0_MAIN_LOAD(x1[1]1, +(x0[1]1, 1))), ≥)∧[(-1)Bound*bni_17] + [bni_17]x1[0] ≥ 0∧[1 + (-1)bso_18] ≥ 0)
(15) (x1[0] ≥ 0∧[-1]x0[1] + [1] ≥ 0∧[2] + [2]x1[0] ≥ 0∧[2]x1[0] ≥ 0∧x0[1] ≥ 0 ⇒ (UIncreasing(629_0_MAIN_LOAD(x1[1]1, +(x0[1]1, 1))), ≥)∧[(-1)Bound*bni_17] + [bni_17]x1[0] ≥ 0∧[1 + (-1)bso_18] ≥ 0)
(16) (x1[0] ≥ 0∧x0[1] + [1] ≥ 0∧x0[1] ≥ 0∧[1] + x1[0] ≥ 0∧x1[0] ≥ 0 ⇒ (UIncreasing(629_0_MAIN_LOAD(x1[1]1, +(x0[1]1, 1))), ≥)∧[(-1)Bound*bni_17] + [bni_17]x1[0] ≥ 0∧[1 + (-1)bso_18] ≥ 0)
(17) (x1[0] ≥ 0∧[-1]x0[1] + [1] ≥ 0∧x0[1] ≥ 0∧[1] + x1[0] ≥ 0∧x1[0] ≥ 0 ⇒ (UIncreasing(629_0_MAIN_LOAD(x1[1]1, +(x0[1]1, 1))), ≥)∧[(-1)Bound*bni_17] + [bni_17]x1[0] ≥ 0∧[1 + (-1)bso_18] ≥ 0)
(18) (+(x1[3], 1)=x1[0]∧x0[3]=x0[0]∧&&(>(x1[0], x0[0]), >=(x0[0], 0))=TRUE∧x1[0]=x1[1]∧x0[0]=x0[1] ⇒ COND_629_0_MAIN_LOAD(TRUE, x1[1], x0[1])≥NonInfC∧COND_629_0_MAIN_LOAD(TRUE, x1[1], x0[1])≥629_0_MAIN_LOAD(x1[1], +(x0[1], 1))∧(UIncreasing(629_0_MAIN_LOAD(x1[1], +(x0[1], 1))), ≥))
(19) (>(+(x1[3], 1), x0[0])=TRUE∧>=(x0[0], 0)=TRUE ⇒ COND_629_0_MAIN_LOAD(TRUE, +(x1[3], 1), x0[0])≥NonInfC∧COND_629_0_MAIN_LOAD(TRUE, +(x1[3], 1), x0[0])≥629_0_MAIN_LOAD(+(x1[3], 1), +(x0[0], 1))∧(UIncreasing(629_0_MAIN_LOAD(x1[1], +(x0[1], 1))), ≥))
(20) (x1[3] + [-1]x0[0] ≥ 0∧x0[0] ≥ 0 ⇒ (UIncreasing(629_0_MAIN_LOAD(x1[1], +(x0[1], 1))), ≥)∧[(-1)bni_17 + (-1)Bound*bni_17] + [bni_17]max{[1] + [-1]x0[0] + x1[3], [-1] + x0[0] + [-1]x1[3]} ≥ 0∧[(-1)bso_18] + max{[1] + [-1]x0[0] + x1[3], [-1] + x0[0] + [-1]x1[3]} + [-1]max{[-1]x0[0] + x1[3], x0[0] + [-1]x1[3]} ≥ 0)
(21) (x1[3] + [-1]x0[0] ≥ 0∧x0[0] ≥ 0 ⇒ (UIncreasing(629_0_MAIN_LOAD(x1[1], +(x0[1], 1))), ≥)∧[(-1)bni_17 + (-1)Bound*bni_17] + [bni_17]max{[1] + [-1]x0[0] + x1[3], [-1] + x0[0] + [-1]x1[3]} ≥ 0∧[(-1)bso_18] + max{[1] + [-1]x0[0] + x1[3], [-1] + x0[0] + [-1]x1[3]} + [-1]max{[-1]x0[0] + x1[3], x0[0] + [-1]x1[3]} ≥ 0)
(22) (x1[3] + [-1]x0[0] ≥ 0∧x0[0] ≥ 0∧[2] + [-2]x0[0] + [2]x1[3] ≥ 0∧[-2]x0[0] + [2]x1[3] ≥ 0 ⇒ (UIncreasing(629_0_MAIN_LOAD(x1[1], +(x0[1], 1))), ≥)∧[(-1)Bound*bni_17] + [(-1)bni_17]x0[0] + [bni_17]x1[3] ≥ 0∧[1 + (-1)bso_18] ≥ 0)
(23) (x1[3] ≥ 0∧x0[0] ≥ 0∧[2] + [2]x1[3] ≥ 0∧[2]x1[3] ≥ 0 ⇒ (UIncreasing(629_0_MAIN_LOAD(x1[1], +(x0[1], 1))), ≥)∧[(-1)Bound*bni_17] + [bni_17]x1[3] ≥ 0∧[1 + (-1)bso_18] ≥ 0)
(24) (x1[3] ≥ 0∧x0[0] ≥ 0∧[1] + x1[3] ≥ 0∧x1[3] ≥ 0 ⇒ (UIncreasing(629_0_MAIN_LOAD(x1[1], +(x0[1], 1))), ≥)∧[(-1)Bound*bni_17] + [bni_17]x1[3] ≥ 0∧[1 + (-1)bso_18] ≥ 0)
(25) (&&(>=(x1[2], 0), <(x1[2], x0[2]))=TRUE∧x1[2]=x1[3]∧x0[2]=x0[3] ⇒ 629_0_MAIN_LOAD(x1[2], x0[2])≥NonInfC∧629_0_MAIN_LOAD(x1[2], x0[2])≥COND_629_0_MAIN_LOAD1(&&(>=(x1[2], 0), <(x1[2], x0[2])), x1[2], x0[2])∧(UIncreasing(COND_629_0_MAIN_LOAD1(&&(>=(x1[2], 0), <(x1[2], x0[2])), x1[2], x0[2])), ≥))
(26) (>=(x1[2], 0)=TRUE∧<(x1[2], x0[2])=TRUE ⇒ 629_0_MAIN_LOAD(x1[2], x0[2])≥NonInfC∧629_0_MAIN_LOAD(x1[2], x0[2])≥COND_629_0_MAIN_LOAD1(&&(>=(x1[2], 0), <(x1[2], x0[2])), x1[2], x0[2])∧(UIncreasing(COND_629_0_MAIN_LOAD1(&&(>=(x1[2], 0), <(x1[2], x0[2])), x1[2], x0[2])), ≥))
(27) (x1[2] ≥ 0∧x0[2] + [-1] + [-1]x1[2] ≥ 0 ⇒ (UIncreasing(COND_629_0_MAIN_LOAD1(&&(>=(x1[2], 0), <(x1[2], x0[2])), x1[2], x0[2])), ≥)∧[(-1)bni_19 + (-1)Bound*bni_19] + [bni_19]max{[-1]x0[2] + x1[2], x0[2] + [-1]x1[2]} ≥ 0∧[(-1)bso_20] + max{[-1]x0[2] + x1[2], x0[2] + [-1]x1[2]} + [-1]max{[-1]x0[2] + x1[2], x0[2] + [-1]x1[2]} ≥ 0)
(28) (x1[2] ≥ 0∧x0[2] + [-1] + [-1]x1[2] ≥ 0 ⇒ (UIncreasing(COND_629_0_MAIN_LOAD1(&&(>=(x1[2], 0), <(x1[2], x0[2])), x1[2], x0[2])), ≥)∧[(-1)bni_19 + (-1)Bound*bni_19] + [bni_19]max{[-1]x0[2] + x1[2], x0[2] + [-1]x1[2]} ≥ 0∧[(-1)bso_20] + max{[-1]x0[2] + x1[2], x0[2] + [-1]x1[2]} + [-1]max{[-1]x0[2] + x1[2], x0[2] + [-1]x1[2]} ≥ 0)
(29) (x1[2] ≥ 0∧x0[2] + [-1] + [-1]x1[2] ≥ 0∧[-1] + [2]x0[2] + [-2]x1[2] ≥ 0 ⇒ (UIncreasing(COND_629_0_MAIN_LOAD1(&&(>=(x1[2], 0), <(x1[2], x0[2])), x1[2], x0[2])), ≥)∧[(-1)bni_19 + (-1)Bound*bni_19] + [bni_19]x0[2] + [(-1)bni_19]x1[2] ≥ 0∧[(-1)bso_20] ≥ 0)
(30) (x1[2] ≥ 0∧x0[2] ≥ 0∧[1] + [2]x0[2] ≥ 0 ⇒ (UIncreasing(COND_629_0_MAIN_LOAD1(&&(>=(x1[2], 0), <(x1[2], x0[2])), x1[2], x0[2])), ≥)∧[(-1)Bound*bni_19] + [bni_19]x0[2] ≥ 0∧[(-1)bso_20] ≥ 0)
(31) (x1[2] ≥ 0∧x0[2] ≥ 0∧x0[2] ≥ 0 ⇒ (UIncreasing(COND_629_0_MAIN_LOAD1(&&(>=(x1[2], 0), <(x1[2], x0[2])), x1[2], x0[2])), ≥)∧[(-1)Bound*bni_19] + [bni_19]x0[2] ≥ 0∧[(-1)bso_20] ≥ 0)
(32) (x1[1]=x1[2]∧+(x0[1], 1)=x0[2]∧&&(>=(x1[2], 0), <(x1[2], x0[2]))=TRUE∧x1[2]=x1[3]∧x0[2]=x0[3] ⇒ COND_629_0_MAIN_LOAD1(TRUE, x1[3], x0[3])≥NonInfC∧COND_629_0_MAIN_LOAD1(TRUE, x1[3], x0[3])≥629_0_MAIN_LOAD(+(x1[3], 1), x0[3])∧(UIncreasing(629_0_MAIN_LOAD(+(x1[3], 1), x0[3])), ≥))
(33) (>=(x1[2], 0)=TRUE∧<(x1[2], +(x0[1], 1))=TRUE ⇒ COND_629_0_MAIN_LOAD1(TRUE, x1[2], +(x0[1], 1))≥NonInfC∧COND_629_0_MAIN_LOAD1(TRUE, x1[2], +(x0[1], 1))≥629_0_MAIN_LOAD(+(x1[2], 1), +(x0[1], 1))∧(UIncreasing(629_0_MAIN_LOAD(+(x1[3], 1), x0[3])), ≥))
(34) (x1[2] ≥ 0∧x0[1] + [-1]x1[2] ≥ 0 ⇒ (UIncreasing(629_0_MAIN_LOAD(+(x1[3], 1), x0[3])), ≥)∧[(-1)bni_21 + (-1)Bound*bni_21] + [bni_21]max{[-1] + [-1]x0[1] + x1[2], [1] + x0[1] + [-1]x1[2]} ≥ 0∧[(-1)bso_22] + max{[-1] + [-1]x0[1] + x1[2], [1] + x0[1] + [-1]x1[2]} + [-1]max{[-1]x0[1] + x1[2], x0[1] + [-1]x1[2]} ≥ 0)
(35) (x1[2] ≥ 0∧x0[1] + [-1]x1[2] ≥ 0 ⇒ (UIncreasing(629_0_MAIN_LOAD(+(x1[3], 1), x0[3])), ≥)∧[(-1)bni_21 + (-1)Bound*bni_21] + [bni_21]max{[-1] + [-1]x0[1] + x1[2], [1] + x0[1] + [-1]x1[2]} ≥ 0∧[(-1)bso_22] + max{[-1] + [-1]x0[1] + x1[2], [1] + x0[1] + [-1]x1[2]} + [-1]max{[-1]x0[1] + x1[2], x0[1] + [-1]x1[2]} ≥ 0)
(36) (x1[2] ≥ 0∧x0[1] + [-1]x1[2] ≥ 0∧[1] + [2]x0[1] + [-2]x1[2] ≥ 0∧[-2]x0[1] + [2]x1[2] ≥ 0 ⇒ (UIncreasing(629_0_MAIN_LOAD(+(x1[3], 1), x0[3])), ≥)∧[(-1)Bound*bni_21] + [bni_21]x0[1] + [(-1)bni_21]x1[2] ≥ 0∧[1 + (-1)bso_22] + [2]x0[1] + [-2]x1[2] ≥ 0)
(37) (x1[2] ≥ 0∧x0[1] + [-1]x1[2] ≥ 0∧[1] + [2]x0[1] + [-2]x1[2] ≥ 0∧[-1] + [2]x0[1] + [-2]x1[2] ≥ 0 ⇒ (UIncreasing(629_0_MAIN_LOAD(+(x1[3], 1), x0[3])), ≥)∧[(-1)Bound*bni_21] + [bni_21]x0[1] + [(-1)bni_21]x1[2] ≥ 0∧[1 + (-1)bso_22] ≥ 0)
(38) (x0[1] + x1[2] ≥ 0∧[-1]x1[2] ≥ 0∧[1] + [-2]x1[2] ≥ 0∧[2]x1[2] ≥ 0 ⇒ (UIncreasing(629_0_MAIN_LOAD(+(x1[3], 1), x0[3])), ≥)∧[(-1)Bound*bni_21] + [(-1)bni_21]x1[2] ≥ 0∧[1 + (-1)bso_22] + [-2]x1[2] ≥ 0)
(39) (x1[2] ≥ 0∧x0[1] ≥ 0∧[1] + [2]x0[1] ≥ 0∧[-1] + [2]x0[1] ≥ 0 ⇒ (UIncreasing(629_0_MAIN_LOAD(+(x1[3], 1), x0[3])), ≥)∧[(-1)Bound*bni_21] + [bni_21]x0[1] ≥ 0∧[1 + (-1)bso_22] ≥ 0)
(40) (x0[1] ≥ 0∧0 ≥ 0∧[1] ≥ 0∧0 ≥ 0 ⇒ (UIncreasing(629_0_MAIN_LOAD(+(x1[3], 1), x0[3])), ≥)∧[(-1)Bound*bni_21] ≥ 0∧[1 + (-1)bso_22] ≥ 0)
(41) (x1[2] ≥ 0∧x0[1] ≥ 0∧x0[1] ≥ 0∧x0[1] ≥ 0 ⇒ (UIncreasing(629_0_MAIN_LOAD(+(x1[3], 1), x0[3])), ≥)∧[(-1)Bound*bni_21] + [bni_21]x0[1] ≥ 0∧[1 + (-1)bso_22] ≥ 0)
(42) (+(x1[3], 1)=x1[2]∧x0[3]=x0[2]∧&&(>=(x1[2], 0), <(x1[2], x0[2]))=TRUE∧x1[2]=x1[3]1∧x0[2]=x0[3]1 ⇒ COND_629_0_MAIN_LOAD1(TRUE, x1[3]1, x0[3]1)≥NonInfC∧COND_629_0_MAIN_LOAD1(TRUE, x1[3]1, x0[3]1)≥629_0_MAIN_LOAD(+(x1[3]1, 1), x0[3]1)∧(UIncreasing(629_0_MAIN_LOAD(+(x1[3]1, 1), x0[3]1)), ≥))
(43) (>=(+(x1[3], 1), 0)=TRUE∧<(+(x1[3], 1), x0[2])=TRUE ⇒ COND_629_0_MAIN_LOAD1(TRUE, +(x1[3], 1), x0[2])≥NonInfC∧COND_629_0_MAIN_LOAD1(TRUE, +(x1[3], 1), x0[2])≥629_0_MAIN_LOAD(+(+(x1[3], 1), 1), x0[2])∧(UIncreasing(629_0_MAIN_LOAD(+(x1[3]1, 1), x0[3]1)), ≥))
(44) (x1[3] + [1] ≥ 0∧x0[2] + [-2] + [-1]x1[3] ≥ 0 ⇒ (UIncreasing(629_0_MAIN_LOAD(+(x1[3]1, 1), x0[3]1)), ≥)∧[(-1)bni_21 + (-1)Bound*bni_21] + [bni_21]max{[1] + [-1]x0[2] + x1[3], [-1] + x0[2] + [-1]x1[3]} ≥ 0∧[(-1)bso_22] + max{[1] + [-1]x0[2] + x1[3], [-1] + x0[2] + [-1]x1[3]} + [-1]max{[2] + [-1]x0[2] + x1[3], [-2] + x0[2] + [-1]x1[3]} ≥ 0)
(45) (x1[3] + [1] ≥ 0∧x0[2] + [-2] + [-1]x1[3] ≥ 0 ⇒ (UIncreasing(629_0_MAIN_LOAD(+(x1[3]1, 1), x0[3]1)), ≥)∧[(-1)bni_21 + (-1)Bound*bni_21] + [bni_21]max{[1] + [-1]x0[2] + x1[3], [-1] + x0[2] + [-1]x1[3]} ≥ 0∧[(-1)bso_22] + max{[1] + [-1]x0[2] + x1[3], [-1] + x0[2] + [-1]x1[3]} + [-1]max{[2] + [-1]x0[2] + x1[3], [-2] + x0[2] + [-1]x1[3]} ≥ 0)
(46) (x1[3] + [1] ≥ 0∧x0[2] + [-2] + [-1]x1[3] ≥ 0∧[-3] + [2]x0[2] + [-2]x1[3] ≥ 0∧[4] + [-2]x0[2] + [2]x1[3] ≥ 0 ⇒ (UIncreasing(629_0_MAIN_LOAD(+(x1[3]1, 1), x0[3]1)), ≥)∧[(-2)bni_21 + (-1)Bound*bni_21] + [bni_21]x0[2] + [(-1)bni_21]x1[3] ≥ 0∧[-3 + (-1)bso_22] + [2]x0[2] + [-2]x1[3] ≥ 0)
(47) (x1[3] + [1] ≥ 0∧x0[2] + [-2] + [-1]x1[3] ≥ 0∧[-3] + [2]x0[2] + [-2]x1[3] ≥ 0∧[-5] + [2]x0[2] + [-2]x1[3] ≥ 0 ⇒ (UIncreasing(629_0_MAIN_LOAD(+(x1[3]1, 1), x0[3]1)), ≥)∧[(-2)bni_21 + (-1)Bound*bni_21] + [bni_21]x0[2] + [(-1)bni_21]x1[3] ≥ 0∧[1 + (-1)bso_22] ≥ 0)
(48) (x0[2] + [-1] + [-1]x1[3] ≥ 0∧x1[3] ≥ 0∧[1] + [2]x1[3] ≥ 0∧[-2]x1[3] ≥ 0 ⇒ (UIncreasing(629_0_MAIN_LOAD(+(x1[3]1, 1), x0[3]1)), ≥)∧[(-1)Bound*bni_21] + [bni_21]x1[3] ≥ 0∧[1 + (-1)bso_22] + [2]x1[3] ≥ 0)
(49) (x0[2] + [-1] + [-1]x1[3] ≥ 0∧x1[3] ≥ 0∧[1] + [2]x1[3] ≥ 0∧[-1] + [2]x1[3] ≥ 0 ⇒ (UIncreasing(629_0_MAIN_LOAD(+(x1[3]1, 1), x0[3]1)), ≥)∧[(-1)Bound*bni_21] + [bni_21]x1[3] ≥ 0∧[1 + (-1)bso_22] ≥ 0)
(50) (x0[2] + [-1]x1[3] ≥ 0∧x1[3] ≥ 0∧[1] + [2]x1[3] ≥ 0∧[-2]x1[3] ≥ 0 ⇒ (UIncreasing(629_0_MAIN_LOAD(+(x1[3]1, 1), x0[3]1)), ≥)∧[(-1)Bound*bni_21] + [bni_21]x1[3] ≥ 0∧[1 + (-1)bso_22] + [2]x1[3] ≥ 0)
(51) (x0[2] ≥ 0∧0 ≥ 0∧[1] ≥ 0∧0 ≥ 0 ⇒ (UIncreasing(629_0_MAIN_LOAD(+(x1[3]1, 1), x0[3]1)), ≥)∧[(-1)Bound*bni_21] ≥ 0∧[1 + (-1)bso_22] ≥ 0)
(52) (x0[2] ≥ 0∧x1[3] ≥ 0∧[1] + [2]x1[3] ≥ 0∧[-1] + [2]x1[3] ≥ 0 ⇒ (UIncreasing(629_0_MAIN_LOAD(+(x1[3]1, 1), x0[3]1)), ≥)∧[(-1)Bound*bni_21] + [bni_21]x1[3] ≥ 0∧[1 + (-1)bso_22] ≥ 0)
(53) (x0[2] ≥ 0∧x1[3] ≥ 0∧x1[3] ≥ 0∧x1[3] ≥ 0 ⇒ (UIncreasing(629_0_MAIN_LOAD(+(x1[3]1, 1), x0[3]1)), ≥)∧[(-1)Bound*bni_21] + [bni_21]x1[3] ≥ 0∧[1 + (-1)bso_22] ≥ 0)
POL(TRUE) = 0
POL(FALSE) = 0
POL(629_0_MAIN_LOAD(x1, x2)) = [-1] + max{[-1]x2 + x1, x2 + [-1]x1}
POL(COND_629_0_MAIN_LOAD(x1, x2, x3)) = [-1] + max{[-1]x3 + x2, x3 + [-1]x2}
POL(&&(x1, x2)) = [-1]
POL(>(x1, x2)) = [-1]
POL(>=(x1, x2)) = [-1]
POL(0) = 0
POL(+(x1, x2)) = x1 + x2
POL(1) = [1]
POL(COND_629_0_MAIN_LOAD1(x1, x2, x3)) = [-1] + max{[-1]x3 + x2, x3 + [-1]x2}
POL(<(x1, x2)) = [-1]
COND_629_0_MAIN_LOAD(TRUE, x1[1], x0[1]) → 629_0_MAIN_LOAD(x1[1], +(x0[1], 1))
COND_629_0_MAIN_LOAD1(TRUE, x1[3], x0[3]) → 629_0_MAIN_LOAD(+(x1[3], 1), x0[3])
629_0_MAIN_LOAD(x1[0], x0[0]) → COND_629_0_MAIN_LOAD(&&(>(x1[0], x0[0]), >=(x0[0], 0)), x1[0], x0[0])
COND_629_0_MAIN_LOAD(TRUE, x1[1], x0[1]) → 629_0_MAIN_LOAD(x1[1], +(x0[1], 1))
629_0_MAIN_LOAD(x1[2], x0[2]) → COND_629_0_MAIN_LOAD1(&&(>=(x1[2], 0), <(x1[2], x0[2])), x1[2], x0[2])
COND_629_0_MAIN_LOAD1(TRUE, x1[3], x0[3]) → 629_0_MAIN_LOAD(+(x1[3], 1), x0[3])
629_0_MAIN_LOAD(x1[0], x0[0]) → COND_629_0_MAIN_LOAD(&&(>(x1[0], x0[0]), >=(x0[0], 0)), x1[0], x0[0])
629_0_MAIN_LOAD(x1[2], x0[2]) → COND_629_0_MAIN_LOAD1(&&(>=(x1[2], 0), <(x1[2], x0[2])), x1[2], x0[2])
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Boolean, Integer